不同物理实体的数字孪生应用重点差别很大。
产品数字孪生应用的重点在于复杂的机电软一体化装备,例如发电设备、工程机械、机械加工中心、高端医疗设备、航空发动机、飞机、卫星、船舶、轨道交通装备、电梯、通信设备,以及能够实现智能互联的通信终端产品。
在产品的设计制造生命周期,可以通过在实物样机上安装传感器,在样机测试的过程中,将传感器采集的数据传递到产品的数字孪生模型,通过对数字孪生模型进行仿真和优化,从而改进和提升最终定型产品的性能;还可以通过半实物仿真的方式,部分零部件采用数字孪生模型,部分零件采用物理模型来进行实时仿真和试验,验证和优化产品性能。另一方面,在产品创新设计时,大多数零部件会重用前一代产品的零部件,如果老产品已经建立了关键零部件的数字孪生模型,同样也应当进行重用,从而提升新产品研发效率和质量。
产品服役的生命周期是产品的数字孪生应用最核心的阶段。尤其是对于长寿命的复杂装备,通过工业物联网采集设备运行数据,并与其数字孪生模型在相同工况下的仿真结果进行比对,可以分析出该设备的运行是否正常,运行绩效如何,是否需要更换零部件,并可以结合人工智能技术分析设备的健康程度,进行故障预测等。对于高端装备产品,其数字孪生模型应当包括每一个实物产品服役的全生命周期数字化档案。
在产品的报废回收再利用生命周期,可以根据产品的使用履历、维修BOM和更换备品备件的记录,结合数字孪生模型的仿真结果,来判断哪些零件可以进行再利用和再制造。例如SpaceX公司的一级火箭实现了复用,结合数字孪生技术,可以更加准确地判断哪些零部件可以复用,从而大大降低了火箭发射的成本。
工厂的数字孪生应用也分为三个方面:在新工厂建设之前,可以通过数字化工厂仿真技术来对构建工厂的数字孪生模型,并对自动化控制系统和产线进行虚拟调试;在工厂建设期间,数字孪生模型可以作为现场施工的指南,还可以应用AR等技术在施工现场指导施工;而在工厂建成之后正式运行期间,可以通过其数字孪生模型对实体工厂的生产设备、物流设备、检测与试验设备、产线和仪表的运行状态与绩效,以及生产质量、产量、能耗、工业安全等关键数据进行可视化,在此基础上进行分析与优化,从而帮助工厂提高产能、提升质量、降低能耗,并消除安全隐患,避免安全事故。
目前,已有很多企业建立了生产监控与指挥系统,对车间进行视频监控,显示设备状态(停机、正常、预警和报警等),展示各种分析报表和图表等。构建数字孪生工厂可以进一步提升工厂运行的透明度。然而,要构建工厂完整的高保真数字孪生模型,需要工厂的建筑、产线、设备和产品的数字孪生模型,难度很大。设备和产线的数字孪生模型构建,有赖于厂商提供相关数据,仅仅通过立体相机拍照,通过逆向工程构建的车间三维模型精度很低,而且也只包括外观的三维模型。但是,即便是仅仅基本的示意性的低精度的工厂数字孪生模型,对于工厂管理者实时洞察生产、质量和能耗情况,尽早发现设备隐患,避免非计划停机,也具有实用价值。
需要强调的是,对于一个已经建成投产的工厂,在工厂运行过程中,其数字孪生工厂所显示的所有数据和状态信息,均来自真实的物理工厂,而非仿真结果。毫无疑问,要构建数字孪生工厂,需要实现设备数据采集和车间联网(M2M)。
下图是美的集团的数字孪生工厂应用实例。
△ 美的集团数字孪生工厂应用实例
数字孪生工厂对于离散制造企业和流程制造企业都有十分重要的价值。在考察英国Aveva公司时,我们观摩了该公司对于化工厂和无人海上钻井平台的数字孪生应用展示,数字孪生应用对于工厂的安全运营具有重要意义。
产品数字孪生模型与工厂数字孪生模型在产品的制造过程中可以实现融合应用。在推进工厂的数字孪生应用时,如果有高保真的产品数字孪生模型,并且在此基础上能够构建产品的制造、装配、包装、测试等工艺的数字孪生模型,以及各种刀具和工装夹具的数字孪生模型,则可以在数字化工厂环境中,更加精准地对产品制造过程进行分析和优化。